Clusters, Galaxies and a Planetary Nebula

At last some astrophotographer-friendly weather conditions! Ever since February seeing conditions have been very poor and I have only managed to shoot 3 images in March. First of which was of the Leo triplet, that – as the name may have given away – is situated in the constellation Leo.

The bottom galaxy (NGC3628) is seen ‘edge on’ and the disc of dust causes the galaxy to appear as 2 bright lines. The other 2 are M65 and M66. All 3 are spiral galaxies.

Leo Triplet; a cluster of 3 closely packed galaxies

Leo Triplet; a cluster of 3 closely packed galaxies

The number of nice globular clusters visible in March in the Netherlands (at a reasonable hour) is rather low. The best is probably M3, which I decided to give a go. The result is the image below. Locating the cluster was hard because it was rather low near the horizon and nearby soccer field lighting made things even more difficult. Globular cluster M3 contains the mind blowing amount of half-a-million stars and lies about 34 thousand light years from Earth.

M3, a globular cluster in Canes Venatici

M3, a globular cluster in Canes Venatici

The last image from the one night I imaged in March, is one of M51. I also imaged this object in February, but at that time it was very low and I didn’t take as much frames as I did now. The image below shows clear blue-purple spiral arms, but I think I haven’t gotten focus quite right when I took the photos.

M51; the Whirlpool Galaxy, also in Canes Venatici

M51; the Whirlpool Galaxy, also in Canes Venatici

Two nights ago was the first clear night of April in this area and I just couldn’t resist to get the telescope out again. Just after midnight, the constellation Lyra was high enough for the Ring Nebula to be imagable from The Netherlands. I have imaged planetary nebula M57 before, but it only showed a green ring and nothing of the yellow and red assymetry was visible. The image below is the result of a 30 frame stack, 30 seconds each and shows a very bright Ring Nebula with the colors I missed before.

M57; the Ring Nebula

M57; the Ring Nebula

The other deep sky object I imaged was the greatest of all globular clusters: M13 in Hercules. I have also imaged M13 before and again I am happy with the improvement. It appears way larger than M3, but that is probably due to it being closer to us (25 thousand light years) because it contains about 200.000 stars less than M3.

M13; the Great Cluster in Hercules

M13; the Great Cluster in Hercules

A nice bonus is the smudge in the bottom of the last image. It is galaxy NGC6207 located some 46 MILLION light years from here. So the light emitted by NGC6207 has traveled for 46 million years only to end up in my camera sensor. Unless I have missed some other distant smudge in one of my images, this probably is the oldest light my camera has ever caught!

Advertisements

Chandra’s and Hubble’s photos of Abell 1689

The Chandra X-ray Observatory and Hubble Space Telescope are two telescopes, orbiting earth, capable of observing in the x-ray and visible regime respectively. Over the years they have produced streams of absolutely stunning images of our beautiful universe. One of the images I like most is a combination of data from both telescopes:

This image of Abell 1689 is a composite of data from the Chandra X-ray Observatory (purple) and the Hubble Space Telescope (yellow)

This image of Abell 1689 is a composite of data from the Chandra X-ray Observatory (purple) and the Hubble Space Telescope (yellow)

It shows the enormous galaxy cluster Abell 1689 and apart from being visualy appealing, the image is also full of cool physical effects that I would like to point out. Let’s start with with the purple x-ray glow coming from the center of the massive galaxy cluster. It originates from extremely hot gas in the center of the galaxy cluster. Reportedly, the gravitational forces at play in that region cause the gas to heat to over a 100 million degrees Celsius. Also, the same purple region is predicted to contain large amounts of dark matter (matter we can’t directly measure, but has to be there in order for the gravitational fields to be as they are).

How intens the gravitational fields are in the center region of the cluster is also apparent from another, in multiple ways cooler, physical effect; gravitational lensing. The theory of gravitational lensing relies on Einsteins theory of general relativity. This may sound scary, but as long as we stay away from the math, there is nothing to worry about ;). To illustrate how this effect works I will borrow a figure from elsewhere on the webweb.

https://i0.wp.com/www.physicsoftheuniverse.com/images/relativity_light_bending.jpg

General relativity at work. Source: http://www.physicsoftheuniverse.com

Einstein’s theory of general relativity tells us that spacetime (simply picture this as space) is curved in the vicinity of very heavy objects. The huge galaxy cluster Abell 1689 significantly curves spacetime and this curved spacetime deflects light from its straight path as is illustrated in the image above.

https://i0.wp.com/www.lsst.org/files/img/Soares-Grav_Lens.jpg

Graphical representation of gravitational lensing by a galaxy cluster. Source: http://www.LSST.org

The complex shape of the gravitational field in Abell 1689 bends light from galaxies behind it towards earth so that a single object appears to be at multiple different places at once. Taking into account that this lensing of course distorts the image intensely, what we expect to see are some vague blurry objects with odd shapes that don’t seem to belong there. This is exactly what is visible in the image that this article is about. In the image below (Hubble data only) I have highlighted the lensed images. Look them up in the original image.

Arcs that are lensed images of galaxies behind the galaxy cluster

Arcs that are lensed images of galaxies behind the galaxy cluster

One more effect I would like to point out is the diffraction due to the telescopic design. The brightest stars in the image are not simply bright dots as one would expect from a spherical star, but look more like crosses. These 4 ‘spikes’ that surround the center star are know as diffraction spikes. They are caused by the structure that supports the secondary mirror in the telescope. This structure is comprised of several (4 in the case of the Hubble Space Telescope) bars that keep the secondary mirror in its place as is shown in the graphic below.

https://i2.wp.com/amazing-space.stsci.edu/resources/explorations/groundup/lesson/basics/g28a/graphics/g28a_hst.gif

Hubble Space Telescope’s optical design scheme

The diffraction is due to the interaction between light passing on either side of the support bars. But how is this possible if light moves in a straight line? Well, as light is not purely particle-like of nature, but also behaves somewhat as a wave, part of the incoming waves may ‘bend around the bar’ a bit. The diffraction pattern shows what is known as the ‘Fourier transform’ of the light. Which means that it shows the spectrum of frequencies present in the incoming light. This is also clearly visible in the image of Abell 1689. Below you see an excerpt of the bigger picture, clearly showing the different colors in the spikes.

Diffraction spikes due to secondary mirror support bars

Diffraction spikes due to secondary mirror support bars

Not only the Hubble telescope shows this diffraction pattern, but amateur telescopes with a similar design do to. In fact, my telescope has 3 such bars which shows 6 (albeit less pronounced) diffraction spikes around bright objects. A while ago I imaged Deneb, a blue-white supergiant star weighing about 20 solar masses, and the resulting image showed some cool diffraction spikes.

Single exposure of blue-white supergiant Deneb. Clearly visible are the 6 diffraction spikes due to the 3 bars that obscure the view.

Single exposure of blue-white supergiant Deneb. Clearly visible are the 6 diffraction spikes due to the 3 bars that obscure the view.

I hope that after reading this, you can appreciate the image at the top of this post as much as I do 🙂