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Preface

This report is written as a way of noting my findings during a literature study on Mott insulators. Over
the course of the past 8 months, I have been completing relevant courses, studied review articles and
looked into related research that is going on at Twente University right now.

The intention of the performed study was to gain further insight in a specific correlated electron effect.
The choice for Mott insulators was driven by the fact that the Mott metal-insulator transition is quite
poorly covered in the solid state courses, despite it being a fairly common (and very interesting) effect.
Furthermore, it is not easy to find an accessible but comprehensive text on Mott insulators, which makes
this assignment more challenging. This report is supposed to bridge the gap between the egg crate models
and the more sophisticated variations on the Hubbard model and describe the link with various analogous
systems.
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1 Introduction

1.1 An introduction to correlated electrons

In the study of electrons in metals, the usual approach is to approximate the electronic system as a free
electron gas (free electron model). Although somewhat rigorous, for most practical purposes, this approxi-
mation works reasonably well.

Common adjustments that make this model more realistic are those that consider a weak background
potential due to the surrounding lattice (nearly free electron model) or a strong potential that binds
electrons close to the nucleus (tight binding model). The background potential of the former model causes
the formation of bands (the band theory of solids). Using Hartree-Fock we can even explain ferromag-
netism in materials.

If we were to study a semiconductor, we would then define a small forbidden band with states that
electrons can't occupy. If enough energy is supplied to the semiconductor and the gap is small enough,
electrons become able to jump over this forbidden band gap and land in the conduction layer. This way
we also have a toy model for semiconductors.

Upon further consideration, more interactions within the electronic structures can be thought of. Usually,
most of these effects are negligible, but sometimes they dominate and can cause a metal-insulator
transition.

1.2 The egg crate model

The widely adopted distinction between metals and insulators at 0 K is that metals have a partially filled
highest band (Fermi level inside the conduction band) while insulators have a completely filled highest
band (Fermi level inside forbidden band). Again, if the forbidden band is small enough, the insulator is
called a semiconductor.

I would like to emphasize that in the rest of this report I will solely consider systems with temperatures
so close to zero, that the probability of finding the system in an excited state due to thermal energy
becomes very small. In other words, apart from the occasional induced excitation, the systems will be in
their ground state.

In 1937, de Boer and Verwey M reported poor zero-temperature conduction in transition-metal oxides
with partially filled d-bands. These materials were previously believed to be metallic, but they seemed to
show insulating behaviour. Peierls and Mott (1937)121 came up with the first possible explanation for this
anomalous effect.

Mott then continued investigating the metal-insulator transition and took important steps towards a
definite description of the special insulating state. This state became known as the Mott insulator and
Mott attributed it to strong electron-electron interactions. If the d-band (just an energy band, no physical
position) electrons are present on almost every site of the lattice, they repel an excited d-band electron so
that it has no place to land for a long time. You can imagine that this long time without an atom to land
on takes a large amount of energy that isn’t present at very low temperatures. So therefore, if all other
landing sites are occupied, electrons tend to stay in place.
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A populair way of visualizing such a system, is by imagining egg-crates as the potential landscape caused
by the periodic lattice and fill the egg crate with little balls (or eggs) that represent electrons. Figure 1
shows two egg crates; the one on the left with all sites occupied and the rightmost crate half-filled. If I
were to tilt the egg crates so that the eggs tend to tumble down to a neighboring hole (applying a voltage
to a sample is essentially a way of tilting the energy landscape), you intuitively “see” that the right crate
is more susceptible to movement of the eggs.

Figure 1: Colorful egg crates; one filled and one half-filled.
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2 Mathematical Frameworks

2.1 The classical approach

A simple mathematical model for the Mott insulating state can be obtained by comparing a few character-
istic lengths and the electron concentration as in Gantmahker’s Electrons and Disorder in Solids tex-
book 31, Suppose we have an atomic lattice and a few ionized donor atoms that provide free, conducting
electrons. The distance between these ionized donors is a = n~'/3 (with n the ionized donor concentration)
and the wavefunctions of these electrons falls of with increasing r as

e~"1%

Y o ; (1)

r

where the Bohr radius ay = 47meyA2/ me e>. The distance it takes to screen the potential of a charge
carrier in a dilute electron gas is given by the Thomas-Fermi screening wave vector ky. We can then
define a screening radius

We can use the lengths gp and 7, to classify the electronic properties of the system. If ag < 7, all electrons
remain within the radius where it is bound by the hosting atom, which corresponds to an insulator.
However, if ag > 7., an electron may travel outside the screening radius where it no longer feels its atom
and becomes delocalized, corresponding to metallic behaviour. If we now try to write 7, in terms of qy
we get

€y 2 1 47 eyh? 1 -
Te 5 5 5 VB a . (3)

m, €2 n'/3 4 ntf3 m, e

We can use this to determine the ionized donor concentration at which the system undergoes a metal-
insulator transition by equating r. = ag:

1 ) 13
N el
A

This tells us that for n > 0.25 ay™> the system is in its metallic state. This condition has been experimen-
tally verified for systems for which Egs. 1 and 2 hold. Note that since the Mott MIT occurs at zero
temperature and is induced by a tradeoff between parameters that determine the ground state energy of
the system, the Mott metal-insulator transition is a quantum phase transition. This classical model
however, is rather specific and not very quantum mechanical. In the next section we will look into a more
sophisticated model.

2.2 The quantum mechanical approach
2.2.1 An intermezzo on notation

I do expect the reader to have some quantum mechanical background, but since I'll be using some second
quantization notation which is not part of the standard master Applied Physics curriculum, I decided to
include this intermezzo.

When you start with your first quantum mechanics course, you start using position representation to
define wavefunctions of the form

Yi(r) = Ae'k T (5)

which describes the particle’s position and energy (via wave vector k).
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Now consider an electron that can be located at 3 different sites and can have 2 different values for k,
which amounts to 6 possible states in total. If we define a list of single electron states in the form
|71, ki; 11, ko; 1o, ki 1o, ko; 13, ki 13, ko) and hold on to this order of states, we can write the state of a
system with an electron at site m and with k -vector k; as [0; 0; 1; 0; 0; 0). In this notation, the state
of the system is described by a list of the numbers of electrons per single electron state. This “second
quantization” notation is also called “number representation” for obvious reasons.

As you may have figured, |0; 0; 0; 0; 0; 0) would describe the vacuum state of the system. The
T

operator &7'3 ), 1s a “creation operator” that creates an electron at position r3 and with k -vector k;. In

action, the operator looks like this:

! . 10,0,0,0,0,0)=[0,0,0,0,1,0). (6)

Cr3 ky

Similarly,

e el 10,0,0,0,0,0)=10,1,0,0,1,0), (7)
which shows us that we can build any state of the system (itself a combination of single electron states)
out of the ground state | 0,0,0,0,0,0).

The counterpart of &L B 18 Cry by, Which “annihilates” or “destroys” an electron in the specified state and is
appropriately called an “annihilation operator”. We can use it to reverse Eq. 7 for example:

ek 110, 1,0,0,1,0)=]0,0,0,0,0,0). (8)

If the operators result in a state that doesn’t exist, such as a state with 2 spin up electrons at the same
position or a system with -1 electrons in a certain state, the operation results in a 0. Notice that

e ek 10,0,0,0,1,0)=1 and &, &10,0,0,0,0,0)=0 (9)

result in the number of electrons in state 73 k. We define the number operator 7, = EL Ky Cry ky» Which

counts the number of electrons in the specified state. We now have introduced enough operators to
describe the Hubbard Hamiltonian in second quantization language.

2.2.2 The bare Hubbard model

In 1963, John Hubbard came up with his famous Hubbard model 4. It describes a Hamiltonian that
combines a “hopping term” with a term that describes the on-site electron-electron repulsion. The former
originates from the tight binding model. The tight binding model’s most important feature is the inter-
site element that describes the hopping of electrons from one site to another. The hopping parameter
t(R) for hopping from site r to a site at position R is defined as

iR) = f () U(r) d(r — R) dPr (10)

i.e. the effect of the atomic potential at r on the overlap integral between different sites. Hubbard uses
this parameter to define his hopping term in second quantization language:

Homty Y (etiorils i) )
all i, 7,0 ; )

It describes all possible ways for an electron of spin o to be annihilated at site j and created at site 4, or
vice versa. The minus sign in front of the ¢ is because this term usually lowers the energy. The on-site
electron-electron repulsion term (or potential term) is written as

7‘{[] = UZ&} &ZT &]:L &il = UZ’;LZT ';Lil- (12)

all i all i
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This term adds a U (Coulomb repulsion) to the total energy for every doubly occupied site, i.e. contains
both a spin up and a spin down electron. It reflects the additional energy required to force 2 negatively
charged electrons into the same site.

Frequently, an extra term is added to the Hamiltonian for controlling the fill fraction. With y the chemi-
cal potential, this term has the form

—H Z(ﬁn + L) (13)

all4
If we were dealing with bosons, the ground state of the system would have all particles in the same state.
But since the electric Mott insulator is a fermionic electron system, Pauli’s exclusion principle allows only
2 particles of opposite spin per site of our system. Because we are usually interested in half-filled systems
(one electron on each site instead of 2 of different spin), the chemical potential is often shifted by U/2 so
that the total Hubbard Hamiltonian becomes:
1

1
At A At A N N
Hy=—t; Z (Ci.,<r Cjo+ Cio cw) + UZ("iT - —] (nii - —). (14)
i, §, 0 i1#] i 2 2

Or simply

7‘{[{27'[1,-{-7'{[]—/1]\7, (15)
where N =3, (fLiT + n;,). Hubbard’s Hamiltonian shows that the energy of the system is a tradeoff between
the energy gained by the hopping itself and the energy lost by putting 2 electrons on one site. Figure 2
shows a diagram that shows how the ratio hopping-repulsion varies with the fill fraction. Clearly visible is
how around half integer filling, the potential term is most dominant. If however, the hopping term is
large enough (or the potential term small enough) the system is very metallic. Diagrams of this ¢/ U form

are extensively used to describe Mott metal-insulator transitions.
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Figure 3: t/ U diagram with critical points at half-integer fill fractions. (by Fischer et al, PRB, 1989)

2.2.3 Extensions to the Hubbard model
The Hubbard model we discussed in the previous section, has quite a few shortcomings. Here, we will
look into these and discuss some extensions to the Hubbard model that make for a better approximation.

One quite crude simplification is that the Hubbard model only considers a single band. Many transition
metal based materials however, have (partially) filled 3d bands and may have 4s and 4p bands at similar
energies. Lattice symmetries often cause the 3d band to split in separate e, and ¢, bands, which may in

> and dgy, dy., d;, orbitals respectively. Now we have a lot of orbitals to

turn split into dp_p, dy 2,

consider and all the corresponding hybridization effects.
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Let's assume that we are lucky and have a system where the 4s and 4p bands are far away from the 3d
band and there is no hybridization between the p and 3d bands into a single effective single band. Further-
more, the splitting within the e, and #,, bands is weak so that we have 2 degenerate orbitals for e, and 3

for ty,. For this problem there is a modified Hubbard model called the degenerate Hubbard model that
deals with all bands v:

WDHZ(}'{Dt‘*'?'{DU‘*‘?'{DUJ- (16)
Here we write the first two terms as
Hpi== D 15 (Eowiow + oy tiow) (17)
(G, ), 0y v, V!
7’{D U= Z (1 - 5v,v' 60',0") Uv,v' ﬁi,o-,v ﬁi,o-‘,v' (18)
i, 0,0, v, V'

where we added hopping from one band on site ¢ to another band on site j to the hopping term and
slightly altered notation in the potential term. Hpy now includes the Pauli exclusion principle with a
factor (1 — Oy 6U7Uv) and covers all intrasite Coulomb interactions, whatever band the electrons may be in

(inter-orbital Coulomb interaction).
The Hp y; term is the “intrasite exchange interaction” which looks as complicated as it sounds:
Hpus=- Z Sy [(1 - 5v,v’) &Z,U,v Ci'y 820",1/' &7770-,‘" = (1 =8 (1 = bcc) &;U',V' a’:{,(ﬂ,‘" 67;’0"" &i’a-"v]' (19)
oo, v,V

The first term lowers the system’s energy if spins on different orbitals (but on the same site of course)
have aligned spin. For the quantum mechanically educated amongst you, Hund’s first rule may now come
to mind and that is exactly what Eq.19 represents. J,, is a factor defined by

e2

Ty = f PU(r) ¢! (1) | | PUr ¢! (") dP . (20)

r—r'

You may also choose to incorporate an intersite exchange term, but this quickly becomes very compli-
cated due to anisotropy in exchange coupling. For a more detailed discussion on an exchange Hamiltonian
in the strong coupling limit, I refer you to Eq. 2.8 of a great review article by Imada et al. (1998) 1.

Now that we have incorporated multiple bands in our model, we look further for simplifications in the
Hubbard model and find that we could improve it by including more than only the on-site Coulomb
repulsion. To do so, we can introduce a Hpy term to incorporate the nearest neighbour Coulomb
interactions:

Hpv = Z VZ]V ﬁz}o‘,v ?Lj,o",v“ (21)
(@0, o0, v, V!
It just adds the matrix element VZ}-V' for every nearest neigbour electron it finds, whatever its spin or
orbital is. We now have
Hpuw=Hpi+Hpy+Hpus+Hpv, (22)

which has become quite a feisty equation if you write out all the terms. In the following chapters, we will
come across even more derivations from the Hubbard model.

J.C. de Boer - 4/3/2015 9/23



3 Optical Trap Mott Insulators

3.1 An introduction to optical Mott systems

There are artificial ways to model Mott insulators. One such way is to trap atoms in an “optical lattice”.
One advantage of optical lattices is that they can be constructed in 1, 2 and 3D forms. These lattices are
build from lasers with nodes at the lattice points. In 1D the setup is rather straightforward and gives a
pattern as in the left of Figure 4. For 2D lattices, the setup is a little more complicated and allows for
more different structures. For us, the most relevant lattice is the square lattice as shown in the right of
Figure 4. If one uses 6 lasers in a configuration as in the left of Figure 5 (where the small arrows indicate
the polarisation of the light), one obtains a 3D square lattice as on the right hand side of the same figure.

Figure 5: 3D Optical square lattice and the corresponding laser setup (van Oosten, 2004 [61).

The conventional method of trapping atoms in an optical trap, was to first trap several atoms in a mag-
neto optical trap (MOT) and then catch these in the optical lattice. However, the atom density would be
very low as a MOT traps ~ 10'° atoms per cm® and the density of the lattice sites is (A/2)™ ~ 10'* per
cm3. This is not enough to model a Mott insulator as we know by now.

Fortunately, we can also load the lattice with a Bose-Einstein condensate via a magnetic trap, which
gives us several atoms per lattice site. Just like with electric Mott instulators and vortex Mott systems,
we would have to use extremely low temperatures to experiment with optical Mott insulators. Optical
cooling is not sufficient in this case because it fails at the required high densities. Instead, evaporative
cooling is used in mentioned magnetic trap to reach Bose-Einstein condensates.

The Hamiltonian that governs the optical Mott insulator system is called the Bose-Hubbard Hamiltonian
and is given by:

1
Hon = —ti; Y a a;+ 5 Uzaz ol &; ;- p af 4. (23)
G i
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The main differences with the fermionic Hubbard Hamiltonian are bosonic operators éf and a;, the absence
of a spin constraint as the Pauli exclusion principle and the sign inversion upon exchange of position.

Over the last decade, these kind of setups have been well studied, including similar optical systems with
fermionic atom gasses.

3.2 Optical Mott insulators in practice

In september 2008, Jordans et. al. [/l published an article that describes how they prepared a quantum
degenerate gas of fermionic “°K atoms and used it in an optical lattice to simulate the fermionic Mott
insulating system. Due to the simple cubic lattice, each atom feels 6¢ (denoted by Jordans et. al. as 6.J)
attractive and U repulsive force. The lefthand plot in Figure x shows how tuning the U/6¢ ratio affects
the average occupation number of each site depending on the total number of atoms in the system. It
clearly shows how switching the repulsive force on causes the atoms to form a Mott insulating system
with very little double occupations. In the same article they also report observations of a gapped mode in
the excitation spectrum of their fermionic optical Mott insulator. The rightmost plot of Figure 6 shows a
distinct peak that marks the gap.

50 |

40 UI6N =0, V, = TE,
0.3f"
30 ) Vo = 10E,
g2/ A § u/(eJ) = 13.6
8 10f U/(BJ) = 4.8, V, = TE, § 0.2
: - id
o r T T T o)
2 P ues-ssv-TE ++ 1 3 0.1
g U8 = 19, V, = 12E, ° o a
4 U/(6J) = 25, Vo= 12E. ® . / 0 )
2 $ L e e * ;/y’ =Y 0 2 4 6
. o 5. RS i Modulation frequency v (kHz)
o 5 1 15 20

Atom number (10%)

Figure 6: Left: Average occupation number as a function of total atom number and Right: A gapped mode
in the excitation spectrum (Jérdans et. al. 2008 [™1).

Another feature that really confirms the Mott insulating behavior is the incompressibility of the atom
gasses near integer filling. The compressibility Z—Z is observable as ‘;—5 where D is the number of doubly
occupied states and N is the total number of atoms in the system. The left image in Figure 7 shows the
idea that instead of a smooth linear curve in the superfluid regime, a staircase would be apparent in the

Mott regime. Vanishing of the compressibility was measured by Jordans et. al. 2008 near potential modula-
tion of U /h = 4kHz.

Incompressibility
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Figure 7: Incompressibility near Mott insulating regimes by Left: Dupius, N (2008) and Right: J6rdans et.
al. 2008.
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3.3 A bosonic Mott model for visualisation

I attempted to make a simpel model that mimics bosonic Mott behaviour like in the optical systems of
this chapter. Modeling this using realistic electron wavefunctions and Hubbard Hamiltonians requires
computational techniques that are way beyond the scope of this report and is rather unnecessary as the
model’s mere purpose is to visualize a principle.

The model T wrote in mathematica simulates a 2D simple square lattice of 10x20 lattice spacings large,
with a variable number of electrons and holes present. The only allowed electron movement is in the
horizontal direction towards the right, which makes it effectively a row of 1D systems. I have chosen to
completely ignore intersite potentials and simply let every electron look whether the site in front of it is
free or not. Actually, as the problem is most interesting near 80-100% occupation of the lattice sites (only
one vacancy per site), I have simulated hole hopping to make computations easier.

No boundary conditions were imposed on the upper and lower side of the lattice since only horizontal
movement is allowed. The horizontal boundary condition is that every hole that hops off the left edge of
the sheet, reincarnates on the right edge at the same y-coordinate so that you may think of the 2D sheet
as a cylinder with circulating electrons and holes.

The result allows the user to select a fill fraction and observe how it affects the dynamics of the electrons
(red) and holes (blue) as shown in Figure 8. The reason I wrote it in Mathematica is that it is supposedly
easy to embed dynamic Mathematica content into webpages, but upon further examination, this proved
to be not so straightforward. Instead, I added the script for the model in the appendix of this report so
that it can be run in Wolfram Mathematica via copy-pasting.

....................

....................

....................

....................

....................

....................

....................

....................

....................

Figure 8: Interface that visualizes hopping holes and electrons (highly simplified model)

The physics here is highly simplified, but the model serves its job as a simple egg-crate toy model. At
100% filling (one electron on every site), the system is stuck and no single electron can hop until the force
exerted on it is high enough to push it in the next energy level. Since only a single level exists in this
overly simplified model, the model only simulates what happens between the critical points.

While toying around, I noticed that at 50% filling (100 electrons and 100 holes), the number of hopping
holes or electrons per second converged to ~80. This is of course due to some rows that contain slightly
more holes (or electrons) so that “traffic jams” occur, while I did not allow the holes to hop into a less
occupied “lane”. This problem is one of optimal conductivitiy depending on fill fraction and probably is
not within the scope of this report. But it does illustrate the purpose of building Mott toy models as is
often done with much more advanced techniques and especially, more correct physics.
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4 Vortex Mott Insulator Systems

4.1 Vortex Mott; a short introduction

Aside from optical systems, more ways have been found to model Mott insulator behavior. In 1993,
David R. Nelson and V.M. Vinokur 8 published a paper that describes a dynamic vortex system with 2D
Mott insulator-like effects. The idea is to prepare an array of superconducting islands (Figure 9, left) so
that an applied magnetic field causes vortices between the superconducting islands. Varying the magnetic
field strength is the obvious way of controlling the vortex fill fraction while a current of vortices can be
measured as flux flow resistivity. This vortex current is induced by a bias de-pinning current (Figure 8,
right). Table 1 shows how the different properties of a vortex Mott system map to an electrical Mott
insulator.

Table 1: Mapping of vortex Mott system on an electrical Mott insulator

Electric Mott system Vortex Mott System
Dynamic component Electric current Vortex flow
Fill fraction control Dopants Magnetic field strength
Cause of movement Bias voltage Bias de-pinning current
Detection of movement |Coulombs / sec Differential flux flow resistivity
Cause of repulsion Coulomb force Lorentz force

Years later, Vinokur collaborated with the Interfaces and Correlated Electron systems (ICE) group at
Twente University to continue research on these vortex Mott systems [°l. They used a 4-point Van der
Pauw configuration gold layer on a substrate with a square lattice of superconducting niobium islands
(spacing a = 267nm) on top. The fill fraction of the vortex system is given by f = B/ By, that is, the

applied field divided by the field of a single flux; By = % ~ 28.6 mT. It seems reasonable to expect Mott

insulator phases at all integer fill fractions as was shown in Figure 3. In fact, Mott insulating behaviour
was measured at even more fill fractions.
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Figure 9: Left; Array of superconducting Nb islands on Au substrate. Right; Same array but with moving
vortices. (Original SEM image by ICE group at Twente University (2014), modified by J.C. de Boer)
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4.2 Interesting results of vortex Mott measurements

Because the vortex Mott insulating phase depends both on fill fraction and on bias current, the measure-
ments were performed at several different bias currents and varying magnetic field. At f =1 and f = 2,
which correspond to full and double filling of the vortex array, Mott insulating phases were observed as
points where the differential resistance dropped close to zero (see Figure 10). At a certain threshold
breakdown current however, the hopping force becomes greater than the repelling force, so that a vortex
current flows. In fact, maxima occur when the breakdown current is reached near integer filling. Possibly,
these maxima occur because of the large amount of vacancies available at this point. This min-max
flipping is quite pronounced and occurs even at fractional filling. Flips at integer and half integer fill

fractions are indicated with arrows in Figure 9, but flipping is also apparent at % and % fill fractions,

especially for the lower bias currents.

0 f=f9/Bo 1 2 3 15

I (mA): 2.0; 0.8;
0.2; 0.1

1.0

0.5 Vortex %

Differential resistance, d V/d7 (<)
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Figure 10: Plot of the differential resistance as a function of fill fraction. Higher differential resistance
indicates more flux hopping. The arrows indicate flipping of minima to maxima at the Mott metal-insula-
tor transitions. It may be a small detail, but in my opinion the dotted green arrow was wrong so I replaced
it by the blue one. The right image shows the transition for different depinning currents. (Original by ICE
group at Twente University (2014), modified by J.C. de Boer)
Upon solving the Harper equation (which I shall not further discuss in this report), energy minima have
been found at f = %, %, %, %, %, %, ..., which reflects modulations of the ground state of the system as is

visualized in Figure 11. It is tempting to propose a link between those effects at fractional filling and the
fractional quantum hall effect. The validity of this connection has yet to be examined.

If one thinks of a vortex as a spin up and a vacancy as a spin down, one sees the similarity between the
f= % vortex Mott system and an antiferromagnet. We will come across this antiferromagnetic behaviour

later.

F=0 f=1/3 f=1/2 f=2/3 =1

Figure 11: Modulated vortex patterns at fractional filling (by ICE group at Twente University, 2014).
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4.3 Scaling in vortex-Mott systems

The ICE group explored the behaviour of Mott systems near the critical transition point through the
theory of scaling. This theory aims to describe the quantum phase transition as a function of a single
variable order parameter. Kotliar et. al. (2000) [ used a mean field version of the Hubbard model to
find that at constant temperature lines and centered about the critical fill fraction h, the width of U, A U
scales as (T, — T)"0~D where 6 follows from the scaling of the source field with the order parameter.
Kotliar et. al. used a Weiss source field which gave them a A U « (T, — T)%? dependency (6 = 3).

The temperature and pressure driven Mott system maps to the vortex-Mott system as |T — T,| - |I — 1|
and |U- U, - h=|f-f| The ICE group plotted their measurement results as |I —I.| vs h = |f — f,| and
since it appeared that approaching critical filling from the left or right differed, both were analysed
separately. The asymmetry may reflect electron and hole tunneling dynamics, just like critical tempera-

tures of electron and hole doped Mott insulators do. The plots for the critical fillings f = %, 1 and 2 are

given in Figure 11.
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Figure 12: Dynamic behaviour of vortex-Mott system near critical point for f = %, 1, 2 (by ICE group at
Twente University, 2014).

Upon fitting (T, — T)%“-D lines on the data presented in Figure 12, best fits were found for ¢ = 2 for

f= % and 0 = 3 for f =1 and 2. Notably, the optimal ¢ values were found to be identical for approaching

the critical point from either left or right-hand sides, despite the apparent asymmetry in the right plot of
Figure 10. In log-log form (lower panels of Figure 12) the data shows a# power law behaviour with

p=1%003for f=7and p=122% 003 for f=1 and 2.

So not only does the vortex system exhibit Mott-like behaviour, it is also able to accurately validate
theoretical models regarding the dynamic Mott transition by well defined vortex-particle mapping. Com-
paring it to optical Mott insulator systems, the vortex-Mott lacks the ability to introduce more complicat-
ing effects such as spin-orbit coupling and a 3D vortex system seems out of the question. The vortex-
Mott does however seem easier to build and operate than an optical system.
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5 Mott Insulators and Superconductivity

5.1 Antiferromagnetism

An interesting class of Mott insulators are the high- T, cuprates with their CuO, planes (Figure 12). The
exchange interaction between the Cu d-orbitals occurs through the ligand p-orbitals on the oxygen atoms,
which are hybridized with their neighbouring d-orbitals. This long range exchange mechanism is called
“superexchange” and allows to be described by the Heisenberg Hamiltonian:

(]—[Hcis = JZSZ Sja
(4,5

where J = 412/ U for systems that can be described by the Hubbard model. If we boldly add this to the
hopping term and include a Coulomb term, we obtain Jozef Spatek’s 110 celebrated ¢-J model:

1
At At A IR
7’{th = —tm' Z (Ci,O' Cjo T+ Co Cj,’o-) + JZ(SZ . Sj - Z n; ’I’L]) (25)

alli, j, o3 i#j (i)

(24)

The superexchange in these cuprates causes them to counteralign spins on neighbouring Cu d-orbitals as
was first suspected by Anderson in 1959 [121. This antiferromagnetic state (also called Néel ordered
phase) is apparent in Figure 13.
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Figure 13: Left: Structure of YBaCuO cuprate, Right: Phase diagram of superconducting cuprates.

5.2 Cuprate superconductivity

In the copper oxide planes of the cuprate superconductors, all 3d orbitals are filled except for one vacancy
in the 3 d$27y2 orbital, so that this orbital becomes half-filled and moreover, a Mott insulator. The conduc-

tion channel here is from the 3 dl,z_yz orbital on one Cu atom, via the oxygen 2 p, or 2 p, orbitals, to the

3 dm27y2 orbital on the next Cu atom (see Figure 14). Upon hole doping the cuprate, a percentage of the
electrons in the 3 dl,z_yz orbitals make place for a vacancy, making the conduction channel wider. T like

Jan Zaanen’s explaination of the Mott insulator as “just the incarnation of rush hour traffic in the world
of electrons” and of doping the system as “the # version of stop-and-go traffic” '3l When increasing the
hole concentration over about 5%, the system not only gets out of the Mott insulating phase, but also
becomes slightly superconducting as you probably noticed in Figure 12. Here I use “slightly”, because
although some Cooper pairs are formed at ~5% hole doping, it takes a higher doping concentration (~
15%) to get to a truly superconducting state.
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Superconducting behavior in lanthanum barium copper oxide was first discovered by Georg Bednorz and
Alex Miiller in 1986. The critical temperatures of the cuprate superconductors are notoriously high, which
explains the term high — T, superconductors. In general, opinions on whether we found a proper explana-
tion for this cuprate 3 d,»_, orbital superconductivity are mixed, although Anderson claims to have found

the solution years ago. Because the matter is quite complicated, we will only shortly address his Resonant
Valence Bond (RVB) theory, which he had developed earlier.

®c Oo @

Figure 14: Left: 3 dz_,» orbital with ligand oxygen 2 p, and 2 p, orbitals, Right: Energy levels of CuO
valence bonds, by Fulde (1991)

RVB theory builds upon the dimerization of the antiferromagnetic Cu lattice into a Valence Bond Solid,
or VBS. These “dimers” consist of a spin up and a spin down electron on two nearest neighbour Cu

3d,_,» orbitals (Figure 15) and are singlets. In Anderson’s model, the system is not dimerized in a single

way, but in a superposition of all different ways to pair the electrons. This allows for quantum fluctua-
tions in the valence bond configuration and explains the name Resonant Valence Bond theory.

According to RVB theory, addition of holes to the system causes some of the electron pairs that formed a
dimer, to become superconducting Cooper pairs. Anderson argues that the pairing between the electrons
would not break when hole doping pushes the system through the Mott-Metal transition since breaking

up the valence bonded pair costs an energy ~.J 141,

I would like to note that in his papers, Anderson strikes me as very assured of his theories. This is proba-
bly due to his status and agressive but sophisticated way of writing, supported by the occasional honest
remark of something minor that ‘may be uncertain’. But although some evidence for a RVB state has
been found in exotic materials, a solid confirmation of RVB being the physical origin for cuprate supercon-
ductivity is still missing. The theory seems to remain a - very - educated guess.
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Figure 15: Dimerization of a square lattice of copper atoms
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6 Exotic Mott insulator systems

Mott insulating effects occur in a large number of compounds. It should therefore not surprise you that
there also exist some Mott insulating materials with additional exotic effects. Think of considerable spin-
orbit coupling or topological insulator effects... Furthermore, the artificial Mott insulating systems we
developed in the recent years - especially optical traps - allow us to introduce numerous effects to the
Mott insulating system and study the consequences. In this section I will, very briefly, discuss some of
these exotics.

6.1 Mott insulators with high spin-orbit coupling

Heavy Mott insulating materials may also exhibit considerable spin-orbit coupling. This adds an extra
term

Hy = AZL,; -5, (26)

which supports the potential or U term. Consequently, these heavy materials sometimes don’t need high
Coulomb potentials to become Mott insulators. One may also need to include the spin-orbit interaction in
the form of a Rashba Hamiltonian:

— (=7 s
‘HR—AZCJ-(O'xd”)c,, (27)
(04>
where d;; is the vector between sites i and j. The Rashba Hamiltonian couples hopping to variations in

spin. This introduces interesting effects as finite momentum superfluids with complex phase patterns and
may break the Mott insulating state [151.

6.2 Topological Mott insulators

Some materials that show high spin-orbit interactions, may also exhibit topological insulating properties.
These are reasonably called Topological Mott Insulators or MIT’s. Like most topological insulators, they
show nontrivial edge states and are characterized by a nonzero Chern number.

Unlike “conventional” topological insulators, TMI’s have gapless edge “spinons”. These spinons are charge-
less particles with the spin of an electron. These emerge when electrons in a quantum spin liquid (similar
to Anderson’s RVB state from the previous section) become deconfined, together with a spinless holon
that carries the electron charge.

TMTI’s have been created in 1D optical Mott lattices by, among others, Yoshida et. al. (2014) 161,

6.3 Proximity effects in topological insulator and Mott insulator
heterostructures

Like often used with superconducting materials, topological insulators may also affect the electric
behaviour of nearby materials. Ueda et. al. (2013) 17 performed a theoretical study on the effect of a
topological insulator(TT) - Mott insulator(MI) heterostructure where a thin layer of TI is sandwiched
between MI materials. Here the left and right MI materials are modelled as:

7'{MI = 7’[3 + WL + (]’{§L (28)
where

WR,L =t Z 6;0_ &j,g’ + UZ’TALZT h7l and (]‘{P]}L = Z V(&,J;U_ CAL]-’O- + (Al];o_ ’é]'7g-). (29)

(B.g), i {0, o
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Here Hp and H,, are the single band Hubbard Hamiltonians of the left and right MI materials and H} is

the hybridization matrix. The operator &Z(, creates an electron in the TI region so that the hybridization

matrix elements reflect hopping from a MI region onto the TI and back onto a MI region. The TI region
is described as

WTI = WBHZ + UTI Z 'Fbm‘ 'ﬁi,l, (30)

but we will not examine this any further as the Bernevig-Hughes-Zhang Hamiltonian is not within the
scope of this report. Ueda et. al. used dynamical mean-field theory (DMFT) to find that the helical edge
states of the TI penetrate into the MI to cause a mid-gap band that shows the remains of the helical
energy spectrum of the TI. This effect occurs even if the Hubbard gap is very large.
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7 Closing Remarks

During my search for literature about the Mott insulator, I stumbled upon quite a high barrier that
separates the egg-crate explanations from the more sophisticated quantum mechanical treatments. While
the egg-crate model is explainable to the average Joe, reading a paper on Mott insulator systems requires
both a decent education in solid state physics and a handful of subject specific experience that is only
gained by studying multiple of these papers. With this crude introduction to Mott insulators I hope to
make the climb over said barrier easier to take. For me personally, writing this report has given me
insight in a branch of solid state physics I was not familiar with and has proven me to be very interesting.

We have seen in chapters 3 and 4 that there are multiple ways to experimentally gain more insight in the
physics of Mott insulators and that these physical setups are in strong agreement with the developed
mathematical framework of chapter 2. Nevertheless, chapters 5 and 6 have shown us that there are plenty
of unresolved discussions about Mott insulator phenomena, that probably will not end anytime soon.

Though certainly underexplored and therefore interesting in their own right, the exotic systems of chapter
6 are not expected to clarify much of our understanding of the Mott metal-insulator transition itself. A
definite theory of high-T, superconductivity however, may very well coincide with a more profound
understanding of Mott insulators. This makes both high-T,. superconductivity and the Mott metal-
insulator transition interesting fields to study or at least monitor during the upcoming decade.
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Appendix

(¥=———————— Script for a simplified bosonic Mott model--—--—————- *)
Clear[m, n, t, ¢, i, k];

m = 10; (*Lattice dim in y-dir¥)

width m*2; (*Lattice dim in x-dir¥*)
tmax = 20;
(* ---- Generates supply of random (but unique) {x,y} coordinates ---- *)

z = width*m*4;

xinil = RandomChoice[Range[width], z];
yinil = RandomChoice[Range[m], z];
randomwell = Table[O*i*k, {i, z}, {k, 2}1;

Do[randomwell[[i, 1]] = xinil[[i]], {i, zZ}];
Do[randomwell[[i, 2]] yinil[[i]], {i, 2}1;

Do|
Do[
If[randomwell[[i]] == randomwell[[j]], randomwell[[i]] = {0, O}1;
r {3, 1 +1, z}]1;
’ {ir z}1;

pos = Position[randomwell, {0, O}];
randomwell = Delete[randomwell, pos];
(* ---- End of random generator ---- *)

(*Define some empty variables with right dim¥*)
sxn = Table[i*0, {i, 100}];

fulltn = Table[i*0, {i, 100}];

hlmvctn = Table[i*0, {i, 100}];

(*Iterates for all defined filling percentages¥*)
Do[

n = Floor[width*m*0.01*f];

Efield = 2;

echarge = 1;

(*Makes 100% electron latticex)

full = Table[O*i*k, {i, 1, m*width}, {k, 2}1];
c = 0;
Do[

Do[full[[i + ¢, 1]]
c = width*b;

; {b, 1, m}];
c =0;
Do|[

Do[full[[i + ¢, 2]] = b, {i, 1, width}];
¢ = width*b;

l4 {bl 11 m}];

i, {i, 1, width}];

(*define some variables*)
numbofholes = m*width - n;
exclude = Table[randomwell[[i]], {i, 1, numbofholes}];

sx = Table[0*i, {i, tmax}];
sx[[1]] = exclude;

(*subtract holes from electron lattice for init cond.*)
fulld = full;
Do|[

pos = Position[fulld, exclude[[i]]];

fulld = Delete[fulld, pos];

, {1, 1, numbofholes}];
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(*making more empty vars at correct dim¥)
fullt = Table[O0*i, {i, tmax}];
fullt[[1]] = fulld;

t=1;

q Table[0*i, {i, numbofholes}];
a = Table[O0*i, {i, 2}];

hlmvct = Table[0*i, {i, tmax}];

(*iterates over time before tmax¥*)
While[t < tmax,

old = sx[[t]];

hlmvct2 = 0;

(*iterate over all hole sites¥)
Do[
g = old[[i]];

(*If x coordinate of hole is on left edge, move to right edge¥*)

If[g[[1]] < 2, gxn = width, gxn = g[[1]] - 1];

gl[1]] = gxn;

(*If position left of hole is electron, move hole one site to left¥*)

If [MemberQ[old, g] == True, q[[i]] = old[[i]], And[q[[i]] = g, hlmvct2 = hlmvct2 + 1]];

, {1, 1, numbofholes}];

(*write number of moved holes at latest t to global variable¥*)
hlmvct[[t + 1]] = hlmvct2;

(*write new position of holes to global variablex*)

sx[[t + 1]1] = q;

(*subtract holes from full electron latticex*)
fulld = full;
Do[

pos = Position[fulld, q[[k]]l];

fulld = Delete[fulld, pos];

, {k, 1, numbofholes}];

(*write new position of electrons to global variablex*)
fullt[[t + 1]] = fulld;

t=t + 1;
1;

(*write all global vars to position for fill fraction f¥*)
sxn[[f]] = sx;

fulltn[[£f]] = fullt;

hlmvctn[[f]] = hlmvct;

, {f, {25, 50, 75, 90, 95, 100}}];

(*visualisation and interface¥*)
Manipulate][

fullt = fulltn[[£f]];

sx = sxn[[£f]];

hlmvct = hlmvctn[[£f]];

Animate[Graphics][ {

{Text[ "Number of electrons that hopped right: ", {2, -1}1},

{Text[hlmvet[[t]], {6, -1}1},

{Red, PointSize -> .01, Point[{fullt[[t]]}]1},

{Blue, PointSize -> .01, Point[{sx[[t]]}]},

{Black, Line[{{0, 0}, {width + 1, 0}}]},

{Black, Line[{{0, m + 1}, {width + 1, m + 1}}]1},

{Black, Line[{{O0, O}, {0, m + 1}}1},

{Black, Line[{{width + 1, 0}, {width + 1, m + 1}}]}

}, PlotRange -> {{-2, width + 2}, {0 - 2, m + 2}}, ImageSize -> Large], {t, 1, tmax,
1}, AnimationRate -> 1.5]
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