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Preface
This report is written as a way of noting my findings during a literature study on Mott insulators. Over
the  course  of  the  past  8  months,  I  have  been  completing  relevant  courses,  studied  review  articles  and
looked into related research that is going on at Twente University right now. 
The intention of  the performed study was to gain further insight in a specific  correlated electron effect.
The  choice  for  Mott  insulators  was  driven  by  the  fact  that  the  Mott  metal-insulator  transition  is  quite
poorly covered in the solid state  courses,  despite  it  being a fairly  common (and very interesting)  effect.
Furthermore, it is not easy to find an accessible but comprehensive text on Mott insulators, which makes
this assignment more challenging. This report is supposed to bridge the gap between the egg crate models
and the more sophisticated variations on the Hubbard model and describe the link with various analogous
systems. 
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1 Introduction

1.1 An introduction to correlated electrons
In the study of electrons in metals, the usual approach is to approximate the electronic system as a free
electron gas (free electron model). Although somewhat rigorous, for most practical purposes, this approxi-
mation works reasonably well. 
Common  adjustments  that  make  this  model  more  realistic  are  those  that  consider  a  weak  background
potential  due  to  the  surrounding  lattice  (nearly  free  electron  model)  or  a  strong  potential  that  binds
electrons close to the nucleus (tight binding model). The background potential of the former model causes
the  formation  of  bands  (the  band  theory  of  solids).  Using  Hartree-Fock  we  can  even  explain  ferromag-
netism in materials.
If  we  were  to  study  a  semiconductor,  we  would  then  define  a  small  forbidden  band  with  states  that
electrons  can't  occupy.  If  enough energy is  supplied  to  the  semiconductor  and the  gap is  small  enough,
electrons become able to jump over this forbidden band gap and land in the conduction layer. This way
we also have a toy model for semiconductors.
Upon further consideration, more interactions within the electronic structures can be thought of. Usually,
most  of  these  effects  are  negligible,  but  sometimes  they  dominate  and  can  cause  a  metal-insulator
transition.

1.2 The egg crate model
The widely adopted distinction between metals and insulators at 0 K is that metals have a partially filled
highest  band  (Fermi  level  inside  the  conduction  band)  while  insulators  have  a  completely  filled  highest
band (Fermi level inside forbidden band). Again, if  the forbidden band is small  enough, the insulator is
called a semiconductor.
I would like to emphasize that in the rest of this report I will solely consider systems with temperatures
so  close  to  zero,  that  the  probability  of  finding  the  system  in  an  excited  state  due  to  thermal  energy
becomes very small. In other words, apart from the occasional induced excitation, the systems will be in
their ground state.
In  1937,  de  Boer  and  Verwey @1D  reported  poor  zero-temperature  conduction  in  transition-metal  oxides
with partially filled d-bands. These materials were previously believed to be metallic, but they seemed to
show insulating behaviour. Peierls and Mott H1937L@2D came up with the first possible explanation for this
anomalous effect. 
Mott  then  continued  investigating  the  metal-insulator  transition  and  took  important  steps  towards  a
definite  description  of  the  special  insulating  state.  This  state  became  known  as  the  Mott  insulator  and
Mott attributed it to strong electron-electron interactions. If the d-band (just an energy band, no physical
position) electrons are present on almost every site of the lattice, they repel an excited d-band electron so
that it has no place to land for a long time. You can imagine that this long time without an atom to land
on takes a large amount of energy that isn’t present at very low temperatures. So therefore, if  all  other
landing sites are occupied, electrons tend to stay in place.
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A populair way of visualizing such a system, is by imagining egg-crates as the potential landscape caused
by the periodic lattice and fill  the egg crate with little balls (or eggs) that represent electrons. Figure 1
shows two egg crates;  the one on the left with all  sites occupied and the rightmost crate half-filled. If  I
were to tilt the egg crates so that the eggs tend to tumble down to a neighboring hole (applying a voltage
to a sample is essentially a way of tilting the energy landscape), you intuitively “see” that the right crate
is more susceptible to movement of the eggs.

Figure 1: Colorful egg crates; one filled and one half-filled. 
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2 Mathematical Frameworks

2.1 The classical approach
A simple mathematical model for the Mott insulating state can be obtained by comparing a few character-
istic  lengths  and  the  electron  concentration  as  in  Gantmahker’s  Electrons  and  Disorder  in  Solids  tex-
book @3D. Suppose we have an atomic lattice and a few ionized donor atoms that provide free, conducting
electrons. The distance between these ionized donors is a = n-1ê3 (with n the ionized donor concentration)
and the wavefunctions of these electrons falls of with increasing r as

(1)y !
‰-rêa0

r
,

where  the  Bohr  radius  a0 = 4 p e0 —2 ême e2.  The  distance  it  takes  to  screen  the  potential  of  a  charge
carrier  in  a  dilute  electron  gas  is  given  by  the  Thomas-Fermi  screening  wave  vector  k0.  We  can  then
define a screening radius

(2)re =
1
k0

=
p e0 —2

me e2 n1ê3
.

We can use the lengths a0 and re to classify the electronic properties of the system. If a0 < re, all electrons
remain  within  the  radius  where  it  is  bound  by  the  hosting  atom,  which  corresponds  to  an  insulator.
However, if a0 > re, an electron may travel outside the screening radius where it no longer feels its atom
and becomes delocalized, corresponding to metallic  behaviour.  If  we now try to write re  in terms of a0
we get

(3)re =
p e0 —2

me e2 n1ê3
=

1
4 n1ê3

4 p e0 —2

me e2
=

1
2

n-1ê3 a0 .

We  can  use  this  to  determine  the  ionized  donor  concentration  at  which  the  system undergoes  a  metal-
insulator transition by equating re = a0:

(4)re =
1
2

n-1ê3 a0 = a0 Ø n =
1

4 a0

3
.

This tells us that for n > 0.25 a0-3 the system is in its metallic state. This condition has been experimen-
tally  verified  for  systems  for  which  Eqs.  1  and  2  hold.  Note  that  since  the  Mott  MIT  occurs  at  zero
temperature and is induced by a tradeoff between parameters that determine the ground state energy of
the  system,  the  Mott  metal-insulator  transition  is  a  quantum  phase  transition.  This  classical  model
however, is rather specific and not very quantum mechanical. In the next section we will look into a more
sophisticated model.

2.2 The quantum mechanical approach
2.2.1 An intermezzo on notation

I do expect the reader to have some quantum mechanical background, but since I’ll be using some second
quantization notation which is not part of the standard master Applied Physics curriculum, I decided to
include this intermezzo.
When  you  start  with  your  first  quantum  mechanics  course,  you  start  using  position  representation  to
define wavefunctions of the form

(5)ykHrL = A ‰i k ÿ r

which describes the particle’s position and energy (via wave vector k).
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Now consider  an electron that  can be located at  3  different  sites  and can have 2 different  values  for  k,
which  amounts  to  6  possible  states  in  total.  If  we  define  a  list  of  single  electron  states  in  the  form
†r1, k1; r1, k2; r2, k1; r2, k2; r3, k1; r3, k2\  and hold on to this order of states,  we can write the state of a
system with an electron at site r2 and with k -vector k1 as † 0 ; 0 ; 1 ; 0 ; 0 ; 0 \. In this notation, the state
of  the  system  is  described  by  a  list  of  the  numbers  of  electrons  per  single  electron  state.  This  “second
quantization” notation is also called “number representation” for obvious reasons.
As  you  may  have  figured,  † 0 ; 0 ; 0 ; 0 ; 0 ; 0 \  would  describe  the  vacuum  state  of  the  system.  The
operator  c̀r3 k1

†  is  a  “creation  operator”  that  creates  an  electron  at  position  r3  and  with  k  -vector  k1.  In
action, the operator looks like this:

(6)c̀r3 k1
†

† 0 , 0 , 0 , 0 , 0 , 0 \ = † 0 , 0 , 0 , 0 , 1 , 0 \.

Similarly, 

(7)c̀r1 k2
† c̀r3 k1

†
† 0 , 0 , 0 , 0 , 0 , 0 \ = † 0 , 1 , 0 , 0 , 1 , 0 \,

which shows us that we can build any state of the system (itself a combination of single electron states)
out of the ground state † 0 , 0 , 0 , 0 , 0 , 0 \.
The counterpart of c̀r3 k1

†  is c̀r3 k1, which “annihilates” or “destroys” an electron in the specified state and is
appropriately called an “annihilation operator”. We can use it to reverse Eq. 7 for example:

(8)c̀r3 k1 c̀r1 k2 † 0 , 1 , 0 , 0 , 1 , 0 \ = † 0 , 0 , 0 , 0 , 0 , 0 \.
If the operators result in a state that doesn’t exist, such as a state with 2 spin up electrons at the same
position or a system with -1 electrons in a certain state, the operation results in a 0. Notice that

(9)c̀r3 k1
† c̀r3 k1 † 0 , 0 , 0 , 0 , 1 , 0 \ = 1 and c̀r3 k1

† c̀r3 k1 † 0 , 0 , 0 , 0 , 0 , 0 \ = 0

result in the number of electrons in state r3 k1.  We define the number operator ǹr3 k1 = c̀r3 k1
† c̀r3 k1,  which

counts  the  number  of  electrons  in  the  specified  state.  We  now  have  introduced  enough  operators  to
describe the Hubbard Hamiltonian in second quantization language.

2.2.2 The bare Hubbard model
In  1963,  John  Hubbard  came  up  with  his  famous  Hubbard  model @4D.  It  describes  a  Hamiltonian  that
combines a “hopping term” with a term that describes the on-site electron-electron repulsion. The former
originates  from the tight binding model.  The tight binding model’s  most important feature is  the inter-
site  element  that  describes  the  hopping  of  electrons  from  one  site  to  another.  The  hopping  parameter
t(R) for hopping from site r to a site at position R is defined as

(10)tHRL = ‡ f*HrLU HrL fHr -RL „3 r

i.e.  the effect  of  the atomic potential  at  r  on the overlap integral  between different sites.  Hubbard uses
this parameter to define his hopping term in second quantization language:

(11)!t = -ti,j ‚
all i, j,s ; i!j

Ic̀i,s
† c̀j,s + c̀j,s

† c̀i,sM.

It describes all possible ways for an electron of spin s to be annihilated at site j and created at site i, or
vice  versa.  The minus sign in front  of  the t  is  because this  term usually  lowers  the energy.  The on-site
electron-electron repulsion term (or potential term) is written as

(12)!U = U ‚
all i

c̀i
† c̀i c̀i"

† c̀i" = U ‚
all i

ǹi ǹi".
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This term adds a U (Coulomb repulsion) to the total energy for every doubly occupied site, i.e. contains
both a spin up and a spin down electron. It reflects the additional energy required to force 2 negatively
charged electrons into the same site.
Frequently, an extra term is added to the Hamiltonian for controlling the fill fraction. With m the chemi-
cal potential, this term has the form

(13)-m‚
all i

Hǹi + ǹi"L.

If we were dealing with bosons, the ground state of the system would have all particles in the same state.
But since the electric Mott insulator is a fermionic electron system, Pauli’s exclusion principle allows only
2 particles of opposite spin per site of our system. Because we are usually interested in half-filled systems
(one electron on each site instead of 2 of different spin), the chemical potential is often shifted by U/2 so
that the total Hubbard Hamiltonian becomes:

(14)!H = -ti,j ‚
i, j,s ; i!j

Ic̀i,s
† c̀j,s + c̀j,s

† c̀i,sM +U ‚
i

ǹi -
1
2

ǹi" -
1
2

.

Or simply
(15)!H = !t + !U - mN ,

where N =⁄i Hǹi + ǹi"L. Hubbard’s Hamiltonian shows that the energy of the system is a tradeoff between
the energy gained by the hopping itself and the energy lost by putting 2 electrons on one site. Figure 2
shows a diagram that shows how the ratio hopping-repulsion varies with the fill fraction. Clearly visible is
how  around  half  integer  filling,  the  potential  term  is  most  dominant.  If  however,  the  hopping  term  is
large enough (or the potential term small enough) the system is very metallic. Diagrams of this t/U form
are extensively used to describe Mott metal-insulator transitions.

Figure 3: t/U diagram with critical points at half-integer fill fractions. (by Fischer et al, PRB, 1989)

2.2.3 Extensions to the Hubbard model
The  Hubbard  model  we  discussed  in  the  previous  section,  has  quite  a  few  shortcomings.  Here,  we  will
look into these and discuss some extensions to the Hubbard model that make for a better approximation.
One quite crude simplification is that the Hubbard model only considers a single band. Many transition
metal based materials however, have (partially) filled 3d bands and may have 4s and 4p bands at similar
energies. Lattice symmetries often cause the 3d band to split in separate eg  and t2 g  bands, which may in
turn  split  into  dx2-y2, d3 z2-r2  and  dx y , dy z, dz x  orbitals  respectively.  Now  we  have  a  lot  of  orbitals  to
consider and all the corresponding hybridization effects.
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Let's assume that we are lucky and have a system where the 4s and 4p bands are far away from the 3d
band and there is no hybridization between the p and 3d bands into a single effective single band. Further-
more, the splitting within the eg and t2 g bands is weak so that we have 2 degenerate orbitals for eg and 3
for t2 g.  For this  problem there is  a modified Hubbard model  called the degenerate Hubbard model  that
deals with all bands n:

(16)!DH = !D t + !DU + !DU J .
Here we write the first two terms as

(17)!D t = - ‚
Xi, j\,s, n, n'

ti,j
n, n'

Ic̀i,s,n
† c̀j,s,n' + c̀j,s,n

† c̀i,s,n'M

(18)!DU = ‚
i,s,s', n, n'

I1 - dn,n' ds,s'MUn,n' ǹi,s,n ǹi,s',n'

where  we  added  hopping  from  one  band  on  site  i  to  another  band  on  site  j  to  the  hopping  term  and
slightly  altered  notation  in  the  potential  term.  !DU  now  includes  the  Pauli  exclusion  principle  with  a
factor I1 - dn,n' ds,s'M and covers all intrasite Coulomb interactions, whatever band the electrons may be in
(inter-orbital Coulomb interaction).
The !DU J  term is the “intrasite exchange interaction” which looks as complicated as it sounds:

(19)!DU J = - ‚
i,s,s', n, n'

Jn,n'AI1 - dn,n'M c̀i,s,n
† c̀i,s',n c̀i,s',n'

† c̀i,s,n' - H1 - dnn'L H1 - dss'L c̀i,s',n'
† c̀i,s,n'

† c̀i,s,n c̀i,s',nE.

The first  term lowers  the system’s  energy if  spins  on different  orbitals  (but  on the same site  of  course)
have aligned spin. For the quantum mechanically educated amongst you, Hund’s first rule may now come
to mind and that is exactly what Eq.19 represents. Jn,n' is a factor defined by

(20)Jn,n' = ‡ fi
nHrL fin'HrL

e2

†r - r '§
fi
nHr 'L fin'Hr 'L „3r.

You  may  also  choose  to  incorporate  an  intersite  exchange  term,  but  this  quickly  becomes  very  compli-
cated due to anisotropy in exchange coupling. For a more detailed discussion on an exchange Hamiltonian
in the strong coupling limit, I refer you to Eq. 2.8 of a great review article by Imada et al. (1998) @5D.
Now that  we  have  incorporated  multiple  bands  in  our  model,  we  look  further  for  simplifications  in  the
Hubbard  model  and  find  that  we  could  improve  it  by  including  more  than  only  the  on-site  Coulomb
repulsion.  To  do  so,  we  can  introduce  a  !DV  term  to  incorporate  the  nearest  neighbour  Coulomb
interactions:

(21)!DV = ‚
Xi,j\,s,s', n, n'

Vi,j
n,n' ǹi,s,n ǹj,s',n'.

It  just  adds  the  matrix  element  Vi,j
n,n'  for  every  nearest  neigbour  electron  it  finds,  whatever  its  spin  or

orbital is. We now have
(22)!DH = !D t + !DU + !DU J + !DV ,

which has become quite a feisty equation if you write out all the terms. In the following chapters, we will
come across even more derivations from the Hubbard model.
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3 Optical Trap Mott Insulators

3.1 An introduction to optical Mott systems
There are artificial ways to model Mott insulators. One such way is to trap atoms in an “optical lattice”.
One advantage of optical lattices is that they can be constructed in 1, 2 and 3D forms. These lattices are
build from lasers with nodes at the lattice points. In 1D the setup is rather straightforward and gives a
pattern as in the left  of  Figure 4.  For 2D lattices,  the setup is  a little more complicated and allows for
more different structures. For us, the most relevant lattice is the square lattice as shown in the right of
Figure 4. If one uses 6 lasers in a configuration as in the left of Figure 5 (where the small arrows indicate
the polarisation of the light), one obtains a 3D square lattice as on the right hand side of the same figure.

Figure 4: 1 and 2D Optical lattices (van Oosten, 2004 @6D).

Figure 5: 3D Optical square lattice and the corresponding laser setup (van Oosten, 2004 @6D).

The conventional method of trapping atoms in an optical trap, was to first trap several atoms in a mag-
neto optical trap (MOT) and then catch these in the optical lattice. However, the atom density would be
very low as a MOT traps ~ 1010  atoms per cm3  and the density of the lattice sites is Hl ê 2L-3 ~ 1014  per
cm3. This is not enough to model a Mott insulator as we know by now. 
Fortunately,  we  can  also  load  the  lattice  with  a  Bose-Einstein  condensate  via  a  magnetic  trap,  which
gives us several atoms per lattice site. Just like with electric Mott instulators and vortex Mott systems,
we  would  have  to  use  extremely  low  temperatures  to  experiment  with  optical  Mott  insulators.  Optical
cooling  is  not  sufficient  in  this  case  because  it  fails  at  the  required  high  densities.  Instead,  evaporative
cooling is used in mentioned magnetic trap to reach Bose-Einstein condensates.
The Hamiltonian that governs the optical Mott insulator system is called the Bose-Hubbard Hamiltonian
and is given by:

(23)!BH = -ti,j ‚
Xi, j\

ài
† àj +

1
2

U ‚
i

ài
† ài
† ài ài - m ài

† ài.
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The main differences with the fermionic Hubbard Hamiltonian are bosonic operators ài
† and ài, the absence

of  a  spin  constraint  as  the  Pauli  exclusion  principle  and  the  sign  inversion  upon  exchange  of  position.
Over the last decade, these kind of setups have been well studied, including similar optical systems with
fermionic atom gasses.

3.2 Optical Mott insulators in practice
In  september  2008,  Jördans et.  al. @7D  published an article  that  describes  how they prepared a  quantum
degenerate gas of  fermionic  40K atoms and used it  in an optical  lattice  to simulate the fermionic  Mott
insulating system. Due to the simple cubic lattice, each atom feels 6t (denoted by Jördans et. al. as 6J)
attractive and U  repulsive force.  The lefthand plot in Figure x shows how tuning the U/6t  ratio affects
the  average  occupation  number  of  each  site  depending  on  the  total  number  of  atoms  in  the  system.  It
clearly  shows  how  switching  the  repulsive  force  on  causes  the  atoms  to  form  a  Mott  insulating  system
with very little double occupations. In the same article they also report observations of a gapped mode in
the excitation spectrum of their fermionic optical Mott insulator. The rightmost plot of Figure 6 shows a
distinct peak that marks the gap.

Figure 6: Left: Average occupation number as a function of total atom number and Right: A gapped mode 
in the excitation spectrum (Jördans et. al. 2008 @7D).

Another  feature  that  really  confirms  the  Mott  insulating  behavior  is  the  incompressibility  of  the  atom
gasses near integer filling. The compressibility #n

#m
 is observable as #D

#N  where D is the number of doubly
occupied states and N is the total number of atoms in the system. The left image in Figure 7 shows the
idea that instead of a smooth linear curve in the superfluid regime, a staircase would be apparent in the
Mott regime. Vanishing of the compressibility was measured by Jördans et. al. 2008 near potential modula-
tion of U ê h = 4 kHz.

Figure 7: Incompressibility near Mott insulating regimes by Left: Dupius, N (2008) and Right: Jördans et. 
al. 2008.
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3.3 A bosonic Mott model for visualisation
I  attempted to make a simpel  model  that mimics bosonic Mott behaviour like in the optical  systems of
this  chapter.  Modeling  this  using  realistic  electron  wavefunctions  and  Hubbard  Hamiltonians  requires
computational techniques that are way beyond the scope of this report and is rather unnecessary as the
model’s mere purpose is to visualize a principle. 
The model  I  wrote in mathematica simulates  a 2D simple square lattice  of  10x20 lattice  spacings large,
with  a  variable  number  of  electrons  and  holes  present.  The  only  allowed  electron  movement  is  in  the
horizontal direction towards the right, which makes it effectively a row of 1D systems. I have chosen to
completely ignore intersite potentials and simply let every electron look whether the site in front of it is
free or not. Actually, as the problem is most interesting near 80-100% occupation of the lattice sites (only
one vacancy per site), I have simulated hole hopping to make computations easier.
No  boundary  conditions  were  imposed  on  the  upper  and  lower  side  of  the  lattice  since  only  horizontal
movement is allowed. The horizontal boundary condition is that every hole that hops off the left edge of
the sheet, reincarnates on the right edge at the same y-coordinate so that you may think of the 2D sheet
as a cylinder with circulating electrons and holes.
The result allows the user to select a fill fraction and observe how it affects the dynamics of the electrons
(red) and holes (blue) as shown in Figure 8. The reason I wrote it in Mathematica is that it is supposedly
easy to embed dynamic Mathematica  content into webpages,  but upon further examination,  this  proved
to be not so straightforward. Instead, I added the script for the model in the appendix of this report so
that it can be run in Wolfram Mathematica via copy-pasting.

Figure 8: Interface that visualizes hopping holes and electrons (highly simplified model)

The physics  here  is  highly  simplified,  but  the  model  serves  its  job  as  a  simple  egg-crate  toy  model.  At
100% filling (one electron on every site), the system is stuck and no single electron can hop until the force
exerted  on it  is  high  enough to  push it  in  the  next  energy level.  Since  only  a  single  level  exists  in  this
overly simplified model, the model only simulates what happens between the critical points.
While toying around, I noticed that at 50% filling (100 electrons and 100 holes), the number of hopping
holes or electrons per second converged to ~80. This is of course due to some rows that contain slightly
more holes  (or  electrons)  so that “traffic  jams”  occur,  while  I  did not allow the holes  to hop into a less
occupied “lane”.  This  problem is  one  of  optimal  conductivitiy  depending on fill  fraction and probably  is
not within the scope of this report. But it does illustrate the purpose of building Mott toy models as is
often done with much more advanced techniques and especially, more correct physics.
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4 Vortex Mott Insulator Systems

4.1 Vortex Mott; a short introduction
Aside  from  optical  systems,  more  ways  have  been  found  to  model  Mott  insulator  behavior.   In  1993,
David R. Nelson and V.M. Vinokur @8D published a paper that describes a dynamic vortex system with 2D
Mott insulator-like effects. The idea is to prepare an array of superconducting islands (Figure 9, left) so
that an applied magnetic field causes vortices between the superconducting islands. Varying the magnetic
field strength is the obvious way of controlling the vortex fill fraction while a current of vortices can be
measured as flux flow resistivity. This vortex current is induced by a bias de-pinning current (Figure 8,
right).  Table  1  shows  how  the  different  properties  of  a  vortex  Mott  system  map  to  an  electrical  Mott
insulator.

Table 1: Mapping of vortex Mott system on an electrical Mott insulator

Years  later,  Vinokur  collaborated  with  the  Interfaces  and  Correlated  Electron  systems  (ICE)  group  at
Twente University to continue research on these  vortex Mott  systems @9D.  They used a 4-point  Van der
Pauw  configuration  gold  layer  on  a  substrate  with  a  square  lattice  of  superconducting  niobium  islands
(spacing  a = 267 nm)  on  top.  The  fill  fraction  of  the  vortex  system  is  given  by  f = B êB0,  that  is,  the
applied field divided by the field of a single flux; B0 = p —

e a2 ~ 28.6 mT. It seems reasonable to expect Mott
insulator phases at all integer fill fractions as was shown in Figure 3. In fact, Mott insulating behaviour
was measured at even more fill fractions.

Figure 9: Left; Array of superconducting Nb islands on Au substrate. Right; Same array but with moving 
vortices. (Original SEM image by ICE group at Twente University (2014), modified by J.C. de Boer)

J.C. de Boer - 4/3/2015 13 / 23



4.2 Interesting results of vortex Mott measurements
Because the vortex Mott insulating phase depends both on fill fraction and on bias current, the measure-
ments were performed at several  different bias currents and varying magnetic  field.  At f = 1 and f = 2,
which correspond to full and double filling of the vortex array, Mott insulating phases were observed as
points  where  the  differential  resistance  dropped  close  to  zero  (see  Figure  10).  At  a  certain  threshold
breakdown current however, the hopping force becomes greater than the repelling force, so that a vortex
current flows. In fact, maxima occur when the breakdown current is reached near integer filling. Possibly,
these  maxima  occur  because  of  the  large  amount  of  vacancies  available  at  this  point.  This  min-max
flipping  is  quite  pronounced  and  occurs  even  at  fractional  filling.  Flips  at  integer  and  half  integer  fill
fractions  are  indicated  with  arrows  in  Figure  9,  but  flipping  is  also  apparent  at  13  and  23  fill  fractions,
especially for the lower bias currents.

Figure 10: Plot of the differential resistance as a function of fill fraction. Higher differential resistance 
indicates more flux hopping. The arrows indicate flipping of minima to maxima at the Mott metal-insula-

tor transitions. It may be a small detail, but in my opinion the dotted green arrow was wrong so I replaced 
it by the blue one. The right image shows the transition for different depinning currents. (Original by ICE 

group at Twente University (2014), modified by J.C. de Boer)
Upon solving the Harper equation (which I shall not further discuss in this report), energy minima have
been found at f = 1

3 ,
1
2 ,

2
3 ,

4
3 ,

3
2 ,

5
3 , ..., which reflects modulations of the ground state of the system as is

visualized in Figure 11. It is tempting to propose a link between those effects at fractional filling and the
fractional quantum hall effect. The validity of this connection has yet to be examined.
If one thinks of a vortex as a spin up and a vacancy as a spin down, one sees the similarity between the
f = 1

2  vortex Mott system and an antiferromagnet. We will come across this antiferromagnetic behaviour
later.

Figure 11: Modulated vortex patterns at fractional filling (by ICE group at Twente University, 2014).
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4.3 Scaling in vortex-Mott systems
The  ICE  group  explored  the  behaviour  of  Mott  systems  near  the  critical  transition  point  through  the
theory  of  scaling.  This  theory  aims  to  describe  the  quantum  phase  transition  as  a  function  of  a  single
variable  order  parameter.  Kotliar  et.  al.  (2000) @10D  used  a  mean field  version  of  the  Hubbard  model  to
find that at constant temperature lines and centered about the critical fill fraction h, the width of U, DU
scales  as  HTc -TLdêHd-1L,  where  d  follows  from  the  scaling  of  the  source  field  with  the  order  parameter.
Kotliar et. al. used a Weiss source field which gave them a DU ! HTc -TL3ê2 dependency Hd = 3L.  
The temperature and pressure driven Mott system maps to the vortex-Mott system as †T -Tc§ Ø †I - Ic§
and †U -Uc§ Ø h = †f - fc§. The ICE group plotted their measurement results as †I - Ic§ vs h = †f - fc§ and
since  it  appeared  that  approaching  critical  filling  from  the  left  or  right  differed,  both  were  analysed
separately.  The asymmetry may reflect  electron and hole  tunneling dynamics,  just  like critical  tempera-
tures of electron and hole doped Mott insulators do. The plots for the critical fillings f = 1

2 , 1 and 2 are
given in Figure 11.

Figure 12: Dynamic behaviour of vortex-Mott system near critical point for f = 1
2 , 1, 2 (by ICE group at 

Twente University, 2014).

Upon  fitting  HTc -TLdêHd-1L  lines  on  the  data  presented  in  Figure  12,  best  fits  were  found  for  d = 2  for
f = 1

2  and d = 3 for f = 1 and 2. Notably, the optimal d values were found to be identical for approaching
the critical point from either left or right-hand sides, despite the apparent asymmetry in the right plot of
Figure  10.  In  log-log  form  (lower  panels  of  Figure  12)  the  data  shows  xm  power  law  behaviour  with
m = 1 ± 0.03 for f = 1

2  and m = 1.2 ± 0.03 for f = 1 and 2.

So  not  only  does  the  vortex  system  exhibit  Mott-like  behaviour,  it  is  also  able  to  accurately  validate
theoretical models regarding the dynamic Mott transition by well defined vortex-particle mapping. Com-
paring it to optical Mott insulator systems, the vortex-Mott lacks the ability to introduce more complicat-
ing  effects  such  as  spin-orbit  coupling  and  a  3D  vortex  system  seems  out  of  the  question.  The  vortex-
Mott does however seem easier to build and operate than an optical system.
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5 Mott Insulators and Superconductivity

5.1 Antiferromagnetism
An interesting class of Mott insulators are the high-Tc  cuprates with their CuOx  planes (Figure 12). The
exchange interaction between the Cu d-orbitals occurs through the ligand p-orbitals on the oxygen atoms,
which  are  hybridized  with  their  neighbouring  d-orbitals.  This  long  range  exchange  mechanism  is  called
“superexchange” and allows to be described by the Heisenberg Hamiltonian:

(24)!Heis = J ‚
Xi,j\
Si ÿ Sj,

where J = 4 t2 êU  for systems that can be described by the Hubbard model. If we boldly add this to the
hopping term and include a Coulomb term, we obtain Józef Spałek’s @10D celebrated t-J model:

(25)!t-J = -ti,j ‚
all i, j,s ; i!j

Ic̀i,s
† c̀j,s + c̀j,s

† c̀i,sM + J ‚
Xi,j\

Si ÿ Sj -
1
4

ǹi ǹj .

The superexchange in these cuprates causes them to counteralign spins on neighbouring Cu d-orbitals as
was  first  suspected  by  Anderson  in  1959 @12D.  This  antiferromagnetic  state  (also  called  Néel  ordered
phase) is apparent in Figure 13. 

Figure 13: Left: Structure of YBaCuO cuprate, Right: Phase diagram of superconducting cuprates.

5.2 Cuprate superconductivity
In the copper oxide planes of the cuprate superconductors, all 3d orbitals are filled except for one vacancy
in the 3 dx2-y2  orbital, so that this orbital becomes half-filled and moreover, a Mott insulator. The conduc-
tion channel here is from the 3 dx2-y2  orbital on one Cu atom, via the oxygen 2 px  or 2 py  orbitals, to the
3 dx2-y2  orbital on the next Cu atom (see Figure 14). Upon hole doping the cuprate, a percentage of the
electrons  in  the  3 dx2-y2  orbitals  make  place  for  a  vacancy,  making  the  conduction  channel  wider.  I  like
Jan Zaanen’s explaination of the Mott insulator as “just the incarnation of rush hour traffic in the world
of electrons” and of doping the system as “the — version of stop-and-go traffic” @13D.  When increasing the
hole  concentration  over  about  5%,  the  system not  only  gets  out  of  the  Mott  insulating  phase,  but  also
becomes  slightly  superconducting  as  you  probably  noticed  in  Figure  12.  Here  I  use  “slightly”,  because
although  some  Cooper  pairs  are  formed  at  ~5% hole  doping,  it  takes  a  higher  doping  concentration  (~
15%) to get to a truly superconducting state.
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Superconducting behavior in lanthanum barium copper oxide was first discovered by Georg Bednorz and
Alex Müller in 1986. The critical temperatures of the cuprate superconductors are notoriously high, which
explains the term high -Tc  superconductors. In general, opinions on whether we found a proper explana-
tion for this cuprate 3 dx2-y2  orbital superconductivity are mixed, although Anderson claims to have found
the solution years ago. Because the matter is quite complicated, we will only shortly address his Resonant
Valence Bond (RVB) theory, which he had developed earlier.

Figure 14: Left: 3 dx2-y2 orbital with ligand oxygen 2 px and 2 py orbitals, Right: Energy levels of CuO 
valence bonds, by Fulde (1991)

RVB theory builds upon the dimerization of the antiferromagnetic Cu lattice into a Valence Bond Solid,
or  VBS.  These  “dimers”  consist  of  a  spin  up  and  a  spin  down  electron  on  two  nearest  neighbour  Cu
3 dx2-y2  orbitals (Figure 15) and are singlets. In Anderson’s model, the system is not dimerized in a single
way, but in a superposition of all  different ways to pair the electrons.  This allows for quantum fluctua-
tions in the valence bond configuration and explains the name Resonant Valence Bond theory. 
According to RVB theory, addition of holes to the system causes some of the electron pairs that formed a
dimer, to become superconducting Cooper pairs. Anderson argues that the pairing between the electrons
would not break when hole  doping pushes the system through the Mott-Metal  transition since breaking
up the valence bonded pair costs an energy ~J @14D.
I would like to note that in his papers, Anderson strikes me as very assured of his theories. This is proba-
bly due to his status and agressive but sophisticated way of writing, supported by the occasional honest
remark  of  something  minor  that  ‘may  be  uncertain’.  But  although  some  evidence  for  a  RVB state  has
been found in exotic materials, a solid confirmation of RVB being the physical origin for cuprate supercon-
ductivity is still missing. The theory seems to remain a - very - educated guess.

Figure 15: Dimerization of a square lattice of copper atoms
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6 Exotic Mott insulator systems

Mott insulating effects occur in a large number of compounds. It should therefore not surprise you that
there also exist some Mott insulating materials with additional exotic effects. Think of considerable spin-
orbit  coupling  or  topological  insulator  effects...  Furthermore,  the  artificial  Mott  insulating  systems  we
developed  in  the  recent  years  -  especially  optical  traps  -  allow  us  to  introduce  numerous  effects  to  the
Mott  insulating  system and  study  the  consequences.  In  this  section  I  will,  very  briefly,  discuss  some  of
these exotics.

6.1 Mott insulators with high spin-orbit coupling
Heavy  Mott  insulating  materials  may  also  exhibit  considerable  spin-orbit  coupling.  This  adds  an  extra
term

(26)!l = l‚
i

L` i ÿ S
`
i.

which supports the potential or U term. Consequently, these heavy materials sometimes don’t need high
Coulomb potentials to become Mott insulators. One may also need to include the spin-orbit interaction in
the form of a Rashba Hamiltonian:

(27)!R = l‚
Xi,j\

c̀j
†
Js äd i j N c̀i,

where di j  is  the vector between sites i  and j.  The Rashba Hamiltonian couples hopping to variations in
spin. This introduces interesting effects as finite momentum superfluids with complex phase patterns and
may break the Mott insulating state @15D.

6.2 Topological Mott insulators
Some materials that show high spin-orbit interactions, may also exhibit topological insulating properties.
These are reasonably called Topological Mott Insulators or MIT’s. Like most topological insulators, they
show nontrivial edge states and are characterized by a nonzero Chern number. 
Unlike “conventional” topological insulators, TMI’s have gapless edge “spinons”. These spinons are charge-
less particles with the spin of an electron. These emerge when electrons in a quantum spin liquid (similar
to  Anderson’s  RVB state  from the  previous  section)  become  deconfined,  together  with  a  spinless  holon
that carries the electron charge.
TMI’s have been created in 1D optical Mott lattices by, among others, Yoshida et. al. (2014) @16D.

6.3 Proximity effects in topological insulator and Mott insulator 
heterostructures

Like  often  used  with  superconducting  materials,  topological  insulators  may  also  affect  the  electric
behaviour  of  nearby  materials.  Ueda  et.  al.  (2013) @17D  performed  a  theoretical  study  on  the  effect  of  a
topological  insulator(TI)  -  Mott  insulator(MI)  heterostructure  where  a  thin  layer  of  TI  is  sandwiched
between MI materials. Here the left and right MI materials are modelled as:

(28)!MI = !R + !L + !V
RL

where

(29)!R,L = t ‚
Xi,j\,s

c̀i,s
† c̀j,s +U ‚

i
ǹi, ǹi, and !V

RL = ‚
Xi,j\,s

V Ic̀i,s
† àj,s + ài,s

† c̀j,sM.

Here !R and !L are the single band Hubbard Hamiltonians of the left and right MI materials and !V
RL is

the hybridization matrix. The operator ài,s
†  creates an electron in the TI region so that the hybridization

matrix elements reflect hopping from a MI region onto the TI and back onto a MI region. The TI region
is described as
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Here !R and !L are the single band Hubbard Hamiltonians of the left and right MI materials and !V
RL is

the hybridization matrix. The operator ài,s
†  creates an electron in the TI region so that the hybridization

matrix elements reflect hopping from a MI region onto the TI and back onto a MI region. The TI region
is described as

(30)!TI = !BHZ +UTI‚
i

ǹi, ǹi, ,

but  we  will  not  examine  this  any  further  as  the  Bernevig-Hughes-Zhang  Hamiltonian  is  not  within  the
scope of this report. Ueda et. al. used dynamical mean-field theory (DMFT) to find that the helical edge
states  of  the  TI  penetrate  into  the  MI  to  cause  a  mid-gap  band  that  shows  the  remains  of  the  helical
energy spectrum of the TI. This effect occurs even if the Hubbard gap is very large. 
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7 Closing Remarks

During  my  search  for  literature  about  the  Mott  insulator,  I  stumbled  upon  quite  a  high  barrier  that
separates the egg-crate explanations from the more sophisticated quantum mechanical treatments. While
the egg-crate model is explainable to the average Joe, reading a paper on Mott insulator systems requires
both  a  decent  education  in  solid  state  physics  and  a  handful  of  subject  specific  experience  that  is  only
gained by studying multiple  of  these  papers.  With this  crude  introduction to  Mott  insulators  I  hope  to
make  the  climb  over  said  barrier  easier  to  take.  For  me  personally,  writing  this  report  has  given  me
insight in a branch of solid state physics I was not familiar with and has proven me to be very interesting.
We have seen in chapters 3 and 4 that there are multiple ways to experimentally gain more insight in the
physics  of  Mott  insulators  and  that  these  physical  setups  are  in  strong  agreement  with  the  developed
mathematical framework of chapter 2. Nevertheless, chapters 5 and 6 have shown us that there are plenty
of unresolved discussions about Mott insulator phenomena, that probably will not end anytime soon. 
Though certainly underexplored and therefore interesting in their own right, the exotic systems of chapter
6 are not expected to clarify much of  our understanding of  the Mott metal-insulator transition itself.  A
definite  theory  of  high-Tc  superconductivity  however,  may  very  well  coincide  with  a  more  profound
understanding  of  Mott  insulators.  This  makes  both  high-Tc  superconductivity  and  the  Mott  metal-
insulator transition interesting fields to study or at least monitor during the upcoming decade.
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Appendix
(*----------Script  for  a  simplified  bosonic  Mott  model-----------*)

Clear[m, n, t, c, i, k];

m = 10; (*Lattice dim in y-dir*)
width = m*2; (*Lattice dim in x-dir*)
tmax = 20;

(* ---- Generates supply of random (but unique) {x,y} coordinates ---- *)
z = width*m*4;
xini1 = RandomChoice[Range[width], z];
yini1 = RandomChoice[Range[m], z];
randomwell = Table[0*i*k, {i, z}, {k, 2}];

Do[randomwell[[i, 1]] = xini1[[i]], {i, z}];
Do[randomwell[[i, 2]] = yini1[[i]], {i, z}];

Do[
  Do[
    If[randomwell[[i]] == randomwell[[j]], randomwell[[i]] = {0, 0}];
    , {j, i + 1, z}];
  , {i, z}];

pos = Position[randomwell, {0, 0}];
randomwell = Delete[randomwell, pos];
(* ---- End of random generator ---- *)

(*Define some empty variables with right dim*)
sxn = Table[i*0, {i, 100}];
fulltn = Table[i*0, {i, 100}];
hlmvctn = Table[i*0, {i, 100}];

(*Iterates for all defined filling percentages*)
Do[
  n = Floor[width*m*0.01*f];
  Efield = 2;
  echarge = 1;
  
  (*Makes 100% electron lattice*)
  full = Table[0*i*k, {i, 1, m*width}, {k, 2}];
  c = 0;
  Do[
   Do[full[[i + c, 1]] = i, {i, 1, width}];
   c = width*b;
   , {b, 1, m}];
  c = 0;
  Do[
   Do[full[[i + c, 2]] = b, {i, 1, width}];
   c = width*b;
   , {b, 1, m}];
  
  (*define some variables*)
  numbofholes = m*width - n;
  exclude = Table[randomwell[[i]], {i, 1, numbofholes}];
  
  sx = Table[0*i, {i, tmax}];
  sx[[1]] = exclude;
  
  (*subtract holes from electron lattice for init cond.*)
  fulld = full;
  Do[
   pos = Position[fulld, exclude[[i]]];
   fulld = Delete[fulld, pos];
   , {i, 1, numbofholes}];
  
  (*making more empty vars at correct dim*)
  fullt = Table[0*i, {i, tmax}];
  fullt[[1]] = fulld;
  
  t = 1;
  q = Table[0*i, {i, numbofholes}];
  a = Table[0*i, {i, 2}];
  hlmvct = Table[0*i, {i, tmax}];
  
  (*iterates over time before tmax*)
  While[t < tmax,
   old = sx[[t]];
   hlmvct2 = 0;
   
   (*iterate over all hole sites*)
   Do[
    g = old[[i]];
    
    (*If x coordinate of hole is on left edge, move to right edge*)
    If[g[[1]] < 2, gxn = width, gxn = g[[1]] - 1];
    g[[1]] = gxn;
    (*If position left of hole is electron, move hole one site to left*)
    If[MemberQ[old, g] == True, q[[i]] = old[[i]], And[q[[i]] = g, hlmvct2 = hlmvct2 + 1]];
    
    , {i, 1, numbofholes}];
   
   (*write number of moved holes at latest t to global variable*)
   hlmvct[[t + 1]] = hlmvct2;
   (*write new position of holes to global variable*)
   sx[[t + 1]] = q;
   
   (*subtract holes from full electron lattice*)
   fulld = full;
   Do[
    pos = Position[fulld, q[[k]]];
    fulld = Delete[fulld, pos];
    , {k, 1, numbofholes}];
   
   (*write new position of electrons to global variable*)
   fullt[[t + 1]] = fulld;
   
   t = t + 1;
   ];
   
  (*write all global vars to position for fill fraction f*)
  sxn[[f]] = sx;
  fulltn[[f]] = fullt;
  hlmvctn[[f]] = hlmvct;
  
  , {f, {25, 50, 75, 90, 95, 100}}];

(*visualisation and interface*)
Manipulate[
 fullt = fulltn[[f]];
 sx = sxn[[f]];
 hlmvct = hlmvctn[[f]];
 
 Animate[Graphics[{
    {Text["Number of electrons that hopped right: ", {2, -1}]},
    {Text[hlmvct[[t]], {6, -1}]},
    {Red, PointSize -> .01, Point[{fullt[[t]]}]},
    {Blue, PointSize -> .01, Point[{sx[[t]]}]},
    {Black, Line[{{0, 0}, {width + 1, 0}}]},
    {Black, Line[{{0, m + 1}, {width + 1, m + 1}}]},
    {Black, Line[{{0, 0}, {0, m + 1}}]},
    {Black, Line[{{width + 1, 0}, {width + 1, m + 1}}]}
    }, PlotRange -> {{-2, width + 2}, {0 - 2, m + 2}}, ImageSize -> Large], {t, 1, tmax,
1}, AnimationRate -> 1.5]
 
 , {{f, 50, "filling percentage:"}, {25, 50, 75, 90, 95, 100}}]

J.C. de Boer - 4/3/2015 22 / 23



(*----------Script  for  a  simplified  bosonic  Mott  model-----------*)

Clear[m, n, t, c, i, k];

m = 10; (*Lattice dim in y-dir*)
width = m*2; (*Lattice dim in x-dir*)
tmax = 20;

(* ---- Generates supply of random (but unique) {x,y} coordinates ---- *)
z = width*m*4;
xini1 = RandomChoice[Range[width], z];
yini1 = RandomChoice[Range[m], z];
randomwell = Table[0*i*k, {i, z}, {k, 2}];

Do[randomwell[[i, 1]] = xini1[[i]], {i, z}];
Do[randomwell[[i, 2]] = yini1[[i]], {i, z}];

Do[
  Do[
    If[randomwell[[i]] == randomwell[[j]], randomwell[[i]] = {0, 0}];
    , {j, i + 1, z}];
  , {i, z}];

pos = Position[randomwell, {0, 0}];
randomwell = Delete[randomwell, pos];
(* ---- End of random generator ---- *)

(*Define some empty variables with right dim*)
sxn = Table[i*0, {i, 100}];
fulltn = Table[i*0, {i, 100}];
hlmvctn = Table[i*0, {i, 100}];

(*Iterates for all defined filling percentages*)
Do[
  n = Floor[width*m*0.01*f];
  Efield = 2;
  echarge = 1;
  
  (*Makes 100% electron lattice*)
  full = Table[0*i*k, {i, 1, m*width}, {k, 2}];
  c = 0;
  Do[
   Do[full[[i + c, 1]] = i, {i, 1, width}];
   c = width*b;
   , {b, 1, m}];
  c = 0;
  Do[
   Do[full[[i + c, 2]] = b, {i, 1, width}];
   c = width*b;
   , {b, 1, m}];
  
  (*define some variables*)
  numbofholes = m*width - n;
  exclude = Table[randomwell[[i]], {i, 1, numbofholes}];
  
  sx = Table[0*i, {i, tmax}];
  sx[[1]] = exclude;
  
  (*subtract holes from electron lattice for init cond.*)
  fulld = full;
  Do[
   pos = Position[fulld, exclude[[i]]];
   fulld = Delete[fulld, pos];
   , {i, 1, numbofholes}];
  
  (*making more empty vars at correct dim*)
  fullt = Table[0*i, {i, tmax}];
  fullt[[1]] = fulld;
  
  t = 1;
  q = Table[0*i, {i, numbofholes}];
  a = Table[0*i, {i, 2}];
  hlmvct = Table[0*i, {i, tmax}];
  
  (*iterates over time before tmax*)
  While[t < tmax,
   old = sx[[t]];
   hlmvct2 = 0;
   
   (*iterate over all hole sites*)
   Do[
    g = old[[i]];
    
    (*If x coordinate of hole is on left edge, move to right edge*)
    If[g[[1]] < 2, gxn = width, gxn = g[[1]] - 1];
    g[[1]] = gxn;
    (*If position left of hole is electron, move hole one site to left*)
    If[MemberQ[old, g] == True, q[[i]] = old[[i]], And[q[[i]] = g, hlmvct2 = hlmvct2 + 1]];
    
    , {i, 1, numbofholes}];
   
   (*write number of moved holes at latest t to global variable*)
   hlmvct[[t + 1]] = hlmvct2;
   (*write new position of holes to global variable*)
   sx[[t + 1]] = q;
   
   (*subtract holes from full electron lattice*)
   fulld = full;
   Do[
    pos = Position[fulld, q[[k]]];
    fulld = Delete[fulld, pos];
    , {k, 1, numbofholes}];
   
   (*write new position of electrons to global variable*)
   fullt[[t + 1]] = fulld;
   
   t = t + 1;
   ];
   
  (*write all global vars to position for fill fraction f*)
  sxn[[f]] = sx;
  fulltn[[f]] = fullt;
  hlmvctn[[f]] = hlmvct;
  
  , {f, {25, 50, 75, 90, 95, 100}}];

(*visualisation and interface*)
Manipulate[
 fullt = fulltn[[f]];
 sx = sxn[[f]];
 hlmvct = hlmvctn[[f]];
 
 Animate[Graphics[{
    {Text["Number of electrons that hopped right: ", {2, -1}]},
    {Text[hlmvct[[t]], {6, -1}]},
    {Red, PointSize -> .01, Point[{fullt[[t]]}]},
    {Blue, PointSize -> .01, Point[{sx[[t]]}]},
    {Black, Line[{{0, 0}, {width + 1, 0}}]},
    {Black, Line[{{0, m + 1}, {width + 1, m + 1}}]},
    {Black, Line[{{0, 0}, {0, m + 1}}]},
    {Black, Line[{{width + 1, 0}, {width + 1, m + 1}}]}
    }, PlotRange -> {{-2, width + 2}, {0 - 2, m + 2}}, ImageSize -> Large], {t, 1, tmax,
1}, AnimationRate -> 1.5]
 
 , {{f, 50, "filling percentage:"}, {25, 50, 75, 90, 95, 100}}]
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